Benzamidinatokomplexe mit Haupt- und Nebengruppen-Elementen — Strukturen von PhC(NSiMe₃)₂TiCl₂ und PhC(NSiMe₃)₂MoO₂

Herbert W. Roesky*, Birgit Meller, Mathias Noltemeyer, Hans-Georg Schmidt, Uwe Scholz und George M. Sheldrick

Institut für Anorganische Chemie der Universität Göttingen, Tammannstraße 4, D-3400 Göttingen

Eingegangen am 24. Februar 1988

PhC(NSiMe₃)₂Li (3b) reagiert mit SiCl₄, SnCl₄, Me₂SnCl₂, Ph₂-SnCl₂, TiCl₄, ZrCl₄, MoO₂Cl₂ und WO₂Cl₂ unter Bildung von LiCl zu den Amidinatokomplexen 4a-f, 5a und 5b. Von 4e und 5a wird die Röntgenstrukturanalyse mitgeteilt.

Im Rahmen unserer Untersuchungen über die elektronische Stabilisierung hoher formaler Oxidationsstufen an Übergangsmetallen haben wir bisher die Liganden $-N=PR_3^{1}$, $-N=S(O)Me_2^{2}$ und $-N=C(CF_3)_2^{3}$ eingesetzt. In diesem Beitrag berichten wir über Komplexe mit dem $PhC(NSiMe_3)_2$ -Liganden 3.

Die Zahl der bekannten Amidinatokomplexe^{4,5)} ist groß, jedoch sind unseres Wissens keine Liganden eingesetzt worden, die Trimethylsilylgruppen als Substituenten enthalten.

Unsere Untersuchungen an Metallhalogeniden und -oxyhalogeniden hatten zum Ziel, durch Chlortrimethylsilan-Abspaltung oder Silylgruppen-Wanderung den Chelatliganden 1 in einen einzähnigen Nitrenliganden 2 zu überführen. Verbindungen des Typs 2 wären interessante Edukte für die Synthese von ungesättigten metallhaltigen Heterocyclen.

Wir haben kürzlich gefunden, daß die Trimethylsilylgruppen-Wanderung bei Übergangsmetallen für die Darstellung von Metall-Stickstoff-Mehrfachbindungen in Cyclometallaphosphazenen⁶⁾ geeignet ist.

Ergebnisse und Diskussion

Der von uns verwendete Ligand 3 wurde zuerst von Sanger⁷⁾ hergestellt. Unklar ist aber, ob im entsprechenden Lithium-Salz der Strukturtyp 3a oder 3b vorliegt.

NMR-Untersuchungen und IR-Spektren des Lithium-Salzes sowie ein Vergleich mit den von Dehnicke et al. 4) dargestellten Komplexen Cl₄M[iPrNC(Cl)NiPr], M =

Benzamidinato Complexes of Main Group and Transition Metals — Crystal Structures of PhC(NSiMe₃)₂TiCl₂ and PhC(NSiMe₃)₂MoO₂

PhC(NSiMe₃)₂Li₂(3b) reacts with SiCl₄, SnCl₄, Me₂SnCl₂, Ph₂-SnCl₂, TiCl₄, ZrCl₄, MoO₂Cl₂ and WO₂Cl₂ with formation of LiCl to yield the new amidinato complexes 4a-f, 5a, and 5b. The X-ray structure analyses of 4e and 5a are reported.

Mo(V), Re(V), machen den Strukturvorschlag 3b wahrscheinlich.

Umsetzungen von 3b mit Halogeniden des Siliciums und des Zinns ergeben die Verbindungen 4a-d.

Die Abspaltung von Chlortrimethylsilan konnte nicht beobachtet werden. Das gegenüber Zinn kleinere Silicium bildet nur einen viergliedrigen Chelatring aus, wie Verbindung 4a mit Koordinationszahl 5 zeigt. SnCl₄ reagiert mit 3b dagegen zu dem sechsfach koordinierten Spirocyclus 4b. Ein Austausch der Methylgruppe gegen Cl am Zinn ergibt bei 4c keine Änderung der Koordinationszahl am Zinn. Jedoch begünstigen die beiden sterisch anspruchsvollen Phenyl-Gruppen am Zinn die Ausbildung nur eines Chelatringes in 4d. Offensichtlich hat die Größe des Zentralatoms einen Einfluß auf die Anzahl der sich bildenden Chelatringe. Bisher gibt es nur wenige Beispiele für Amidinato-Komplexe

von Übergangsmetallen in hohen formalen Oxidationsstufen.

3b reagiert mit TiCl₄ und ZrCl₄ zu 4e und 4f.

Von 4e konnten aus Diethylether für eine Röntgenstrukturanalyse geeignete Einkristalle erhalten werden. Ein Vergleich der spektroskopischen Daten von 4e und 4f zeigt eindeutig den homologen Aufbau der Titan- und Zirkonverbindung. Eine mögliche Me₃SiCl-Abspaltung unter Bildung einer acyclischen Verbindung des Typs 2 wurde nicht beobachtet.

Bekannt ist die Wanderung der Me₃Si-Gruppe vom Stickstoff- zum Sauerstoffatom bei der Bildung von Cyclometallaphosphazenen⁶). Es interessierte uns, ob eine Me₃Si-Wanderung an MoO₂Cl₂ und WO₂Cl₂ zu den gewünschten Molekülen des Typs **2** führt.

2 3b +
$$MO_2Cl_2$$
 \longrightarrow $(PhC \longrightarrow_{N}^{SiMe_3} N)_2 M \longrightarrow_{O}^{O}$ + $2LiCl_{SiMe_3}$

5a: Mo, 5b: W

Die Reaktion von 3b mit MoO₂Cl₂ und WO₂Cl₂ ergibt 5a und 5b. NMR-Untersuchungen und eine Einkristall-Röntgenstrukturanalyse von 5a belegen jedoch eindeutig den spriocyclischen Aufbau. Offensichtlich ist auch hier am Molybdän und Wolfram die Chelatbildung so sehr begünstigt, daß die acyclischen Nitrenbindungen nicht gebildet werden.

Spektroskopische Untersuchungen

Die IR-Spektren der neu dargestellten Amidinato-Komplexe zeigen die Absorptionen der Me₃Si-Gruppen um 1260 und um 840 cm⁻¹. Für die Strukturaufklärung sollte die antisymmetrische NCN-Valenzschwingung Bedeutung haben. In 3b trifft sie bei 1670 cm⁻¹ als starke Bande auf. In den Amidinato-Komplexen wird sie jedoch nur noch als schwache oder mittelstarke Bande beobachtet.

In den ¹H-NMR-Spektren finden wir die Phenylprotonen im erwarteten Bereich zwischen 7.2 und 8.0 ppm. Die Resonanzen der Me₃Si-Gruppen erscheinen immer als Singuletts, obwohl die Röntgenstrukturanalysen von 4e und 5a chemisch nicht äquivalente Me₃Si-Gruppen aufweisen [N cis und trans zu Cl (4e) bzw. O (5a)]. In Lösung ist bei Raumtemperatur, infolge schnellen Austausches, nur ein Singulett zu sehen. Beim Abkühlen von **4e** auf -60 °C wird es lediglich verbreitert. Die Resonanzen der Phenylreste bzw. der Me₃Si-Gruppen in den ¹³C-NMR-Spektren liegen in den erwarteten Bereichen. Sie geben keine Hinweise auf die Struktur der Verbindungen. Dagegen beobachtet man das endocyclische C-Atom zwischen $\delta = 175.2$ bei 4b und 184.8 bei 4f. Dies entspricht einer Elektronenverteilung am C-Atom, die man als sp²-Hybrid beschreiben kann. Aufgrund der vorliegenden Kristallstrukturen von 4e und 5a kann durch Vergleich der NMR-Daten auch für die anderen Verbindungen ein spirocyclischer Aufbau angenommen werden.

Kristallstrukturen von 4e und 5a

Geeignete Einkristalle von 4e bzw. 5a erhält man durch Umkristallisieren aus Diethylether bzw. Toluol. Die Metallatome sind verzerrt oktaedrisch von vier Stickstoff- und zwei cis-Chlor- (4e, Abb. 1) bzw. zwei cis-Sauerstoff-Atomen (5a, Abb. 2) umgeben. Die [CC(NSi)2M]-Einheiten sind innerhalb 7 pm planar. Der O-Mo-O-Winkel [106.2(3)°] ist größer als der Cl-Ti-Cl-Winkel [98.6(1)°]; dafür ist der Interplanarwinkel zwischen Ligandenebenen kleiner in 5a [82.7(2)° statt 84.0(2)°]. Der trans-Effekt ist deutlich größer in 5a [Mo-N trans zu O 19.2 pm (Mittelwert) länger als trans zu N; Ti-N trans zu Cl 4.0 pm länger als trans zu N]. Der kleine Öffnungswinkel des Liganden [64.9(2)° in 4e bzw. 60.6(3)° in 5a] ermöglicht eine Drehung des Liganden um die M-C-Achse, die die Äquivalenz der Trimethylsilylgruppen auf der NMR-Zeitskala erklären würde; trotzdem ist die hier gefundene cis-Konfiguration energetisch günstiger als eine trans-Konfiguration, da die Abstoßungen zwischen den sperrigen Trimethylsilylgruppen minimiert werden können.

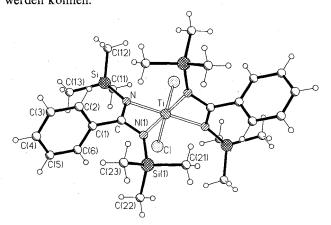


Abb. 1. Molekülstruktur von 4e im Kristall

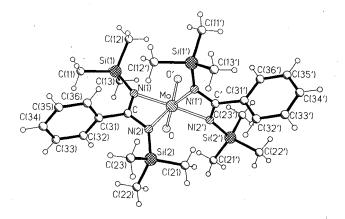


Abb. 2. Molekülstruktur von 5a im Kristall

Wir danken dem Fonds der Chemischen Industrie, der Deutschen Forschungsgemeinschaft und der Stiftung Volkswagenwerk für die Unterstützung dieser Arbeit.

Experimenteller Teil

Alle Arbeiten wurden unter N₂ und in getrockneten Lösungsmitteln durchgeführt. — NMR: Bruker AP 250 und WP 80 SY. — MS: Finnigan MAT 8230. — IR: Perkin Elmer 180 und 325. — Elementaranalyse: Analytisches Labor der Universität Göttingen.

Lithium-N,N'-bis(trimethylsilyl)benzamidinat (3b): 2.3 g (14 mmol) LiN(SiMe₃)₂ werden in 30 ml Et₂O gelöst. Dazu gibt man 1.4 g (14 mmol) PhCN und rührt 1 h bei Raumtemp.

[N,N'-Bis(trimethylsilyl)benzamidinato]siliciumtrichlorid (4a): Zu einer Lösung von 2.1 g (12.5 mmol) LiN(SiMe₃)₂ und 1.27 ml (12.5 mmol) PhCN in 30 ml Et₂O werden bei $-60\,^{\circ}$ C 0.84 g (5.0 mmol) SiCl₄ getropft. Nach 14 h wird die Lösung bei Raumtemp. eingeengt. Die ausfallenden farblosen Kristalle werden isoliert und aus Et₂O/n-Hexan (1:1) umkristallisiert. Ausb. 1.6 g (87%), Schmp. 132°C. – IR (Nujol/KBr): 1670 m ν (C=N). – MS (FI, m/z): 398 (M, 15%). – ¹H-NMR (CDCl₃); δ = 0.1 s, 7.2–7.8 m. – ¹³C-NMR (CDCl₃): δ = 1.1 s, 126.6, 128.7, 131.1, 132.4, 180.5. – ²⁹Si-NMR (CDCl₃): δ = -101.9 s, 7.64 s.

 $C_{13}H_{23}Cl_3N_2Si_3$ (397.4) Ber. C 39.3 H 5.8 Cl 26.7 N 7.1 Gef. C 39.3 H 5.8 Cl 26.6 N 7.1

4,4-Dichlor-2,6-diphenyl-1,3,5,7-tetrakis (trimethylsilyl)-1,3,5,7-tetraaza-4-stannaspiro[3.3]heptan (4b): 3b wird aus 3.17 g (19 mmol) LiN(SiMe₃)₂ und 1.9 g (19 mmol) PhCN hergestellt. Bei -60° C werden 2.2 ml (19 mmol) SnCl₄ langsam zugetropft, dann wird auf Raumtemp. erwärmt. Der ausgefallene weiße Niederschlag wird abfiltriert und mit Et₂O und n-Hexan gewaschen. Ausb. 4.3 g (63%), Subl.-P. 140°C/10⁻⁶ Torr. — IR (Nujol/KBr): 1580 s ν (C=N). — MS (FI, m/z): 716 (M). — ¹H-NMR (CDCl₃): δ = -0.13 s, 7.07 – 7.52 m. — ¹³C-NMR (CDCl₃): δ = 1.07, 126.3, 128.2, 129.3, 136.5, 175.2. — ¹¹⁹Sn-NMR (CDCl₃): δ = -542.6.

C₂₆H₄₆Cl₂N₄Si₄Sn (715.7) Ber. C 43.5 H 6.4 Cl 9.9 N 7.8 Gef. C 43.4 H 6.3 Cl 10.2 N 7.7

4,4-Dimethyl-2,6-diphenyl-1,3,5,7-tetrakis(trimethylsilyl)-1,3,5,7-tetraaza-4-stannaspiro[3.3]heptan (4c): Man arbeitet wie unter 4b beschrieben. 2.5 g (15 mmol) LiN(SiMe₃)₂, 1.45 ml (15 mmol) PhCN und 1.6 g (7.3 mmol) Me₂SnCl₂ in 20 ml Et₂O. Aus Et₂O/n-Hexan fallen bei $-18\,^{\circ}$ C farblose Kristalle in analysenreiner Form an. Ausb. 3.4 g (85%), Zers.-P. 115 $\,^{\circ}$ C. -- MS (FD, m/z): 665 (M -- CH₃ 100%). -- IR (Nujol/KBr): 1565 m v(C=N).

C₂₈H₅₂N₄Si₄Sn (679.8) Ber. C 49.8 H 7.8 N 8.3 Gef. C 49.3 H 7.4 N 8.2

[N,N'-Bis(trimethylsilyl) benzamidinato] diphenylzinnchlorid (4d): 2.1 g (12.5 mmol) LiN(SiMe₃)₂, 1.3 ml (12.5 mmol) PhCN und 1.7 g Ph₂SnCl₂ (5 mmol) in 20 ml THF. Beim Einengen der Reaktionslösung fällt ein farbloser Festsoff aus, der aus Toluol umkristallisiert wird. Ausb. 1.9 g (68%), Zers.-P. 165°C. – IR (KBr/Nujol): 1655 m v(C=N). – MS (FI, m/z): 572 (M, 22%). – ¹H-NMR (CDCl₃): δ = 0.05 s, 7.2–8.0 m. – ¹³C-NMR (CDCl₃): δ = 1.44, 127.0, 128.4, 128.7, 129.5, 129.8, 135.4, 138.2, 143.6, 179.2. ¹¹⁹Sn-NMR (CDCl₃): δ = -259.2.

C₂₅H₃₃ClN₂Si₂Sn (571.9) Ber. C 52.5 H 5.8 Cl 6.2 N 4.9 Gef. C 52.1 H 5.8 Cl 6.3 N 4.8

4,4-Dichlor-2,6-diphenyl-1,3,5,7-tetrakis(trimethylsilyl)-1,3,5,7-tetraaza-4-titanaspiro[3.3]heptan (4e): 4.7 g (28 mmol) LiN(SiMe₃)₂ und 2.9 g (28 mmol) PhCN in 60 ml Et₂O. Bei 0°C tropft man langsam 0.9 g (14 mmol) TiCl₄ zu. Es fällt bei dieser exothermen Reaktion sofort ein roter Feststoff aus der roten Lösung. 4e kristallisiert aus der Reaktionslösung in analysenreiner Form und wird aus CH₃CN umkristallisiert. Ausb. 14.7 g (80%), Schmp. 202°C. – IR (Nujol/KBr): 1600 m v(C=N). – MS (EI, m/z): 644 (M, 1.5%).

- ¹H-NMR (CDCl₃): δ = 0.07 s, 7.2 – 7.8 m. - ¹³C-NMR (CDCl₃): δ = 181.5, 138.2, 129.6, 128.2, 126.1, 1.81. - ²⁹Si-NMR (CDCl₃): δ = 7.05 s.

C₂₆H₄₆Cl₂N₄Si₄Ti (644.9) Ber. C 48.4 H 7.1 Gef. C 48.0 H 6.9

4,4-Dichlor-2,6-diphenyl-1,3,5,7-tetrakis(trimethylsilyl)-1,3,5,7-tetraaza-4-zirconaspiro[3.3]heptan (4f): 4.7 g (28 mmol) LiN(SiMe₃)₂, 2.9 g (28 mmol) PhCN und 3.3 g (14 mmol) ZrCl₄ in 40 ml CH₂Cl₂ suspendiert. Der ausgefallene weiße Feststoff wird zweimal CH₂Cl₂ umkristallisiert. Ausb. 5.2 g (54%), Schmp. 220°C. – IR (Nujol/KBr): 1650 s v(C=N). – MS (EI, m/z): 688 (M, 3%). – ¹H-NMR (CDCl₃): δ = 0.0 s, 7.2–8.0 m. – ¹³C-NMR (CDCl₃): δ = 1.7, 126.1, 128.4, 129.6, 139.3, 184.8. – ²⁹Si-NMR (CDCl₃): δ = 3.8.

C₂₆H₄₆Cl₂N₄Si₄Zr (688.8) Ber. C 45.3 H 6.7 Cl 10.3 Gef. C 45.1 H 6.8 Cl 11.1

4,4-Dioxo-2,6-diphenyl-1,3,5,7-tetrakis(trimethylsilyl)-1,3,5,7-tetraaza-4-molybdaspiro[3.3]heptan (5a): 3.8 g (23 mmol) LiN(SiMe₃)₂ und 2.3 ml (23 mmol) PhCN in 20 ml THF tropft man bei -50 °C zu 1.8 g (8.0 mmol) MoO₂Cl₂ in 20 ml THF. Nach 12 h wird das Lösungsmittel i. Vak. entfernt und der Feststoff aus Toluol umkristallisiert. Ausb. 3.1 g (60%), Zers.-P. 152 °C. — MS (FI, m/z): 742 (M, 100%). — ¹H-NMR (CDCl₃): $\delta = 0.0$ s, 7.1 – 7.5 m. — ¹³C-NMR (CDCl₃): $\delta = 1.6$, 126.2, 126.3, 129.5, 140.7, 181.0.

C₂₆H₄₆MoN₄O₂Si₄ (656.0) Ber. C 47.6 H 7.1 N 8.6 Gef. C 47.0 H 7.2 N 8.6

4,4-Dioxo-2,6-diphenyl-1,3,5,7-tetrakis(trimethylsilyl)-1,3,5,7-tetraaza-4-wolframspiro[3.3]heptan (5b): 3.8 g (23 mmol) LiN-(SiMe₃)₂, 2.3 ml (23 mol) PhCN in 20 ml THF und 1.8 g (8 mmol) MoO₂Cl₂. Die Aufarbeitung erfolgt entsprechend 5a. Ausb. 3.1 g

Tab. 1. Atomkoordinaten (\times 10⁴) und äquivalente isotrope thermische Parameter (pm² · 10⁻¹) von **4e** (äquivalente isotrope *U* berechnet als ein Drittel der Spur des orthogonalen U_{ij} Tensors)

	x	у	z	U(eq)
Ti	5000	1848(2)	2500	37(1)
C1	4530(1)	257(2)	3211(1)	81(1)
N	4239(3)	2128(5)	1699(3)	43(2)
N(1)	4360(3)	3493(5)	2724(3)	40(2)
C	3993(3)	3159(7)	2106(3)	40(2)
C(1)	3367(3)	3870(7)	1894(4)	42(2)
C(2)	3288(4)	4850(8)	1322(4)	66(3)
C(3)	2710(5)	5516(9)	1137(5)	82(4)
C(4)	2217(5)	5195(10)	1500(6)	81(4)
C(5)	2277(4)	4238(10)	2061(6)	75(4)
C(6)	2853(4)	3551(8)	2266(4)	61(3)
S1	3886(1)	1119(2)	933(1)	67(1)
C(11)	3961(4)	-811(8)	1122(5)	94(4)
C(12)	4254(7)	1613(11)	138(5)	207(10
C(13)	3032(6)	1405(14)	727(8)	273(10)
Si(1)	4237(1)	4714(2)	3434(1)	49(1)
C(21)	5022(4)	5252(8)	3865(4)	74(3)
C(22)	3803(4)	3827(9)	4132(5)	93(4)
C(23)	3819(4)	6361(7)	3076(5)	91(4)

Tab. 2. Ausgewählte Bindungsabstände (pm) und Winkel (°) in 4e

Ti-Cl	225.7 (3)	Ti-N	206.6 (5)
Ti-N(1)	210.6 (5)	N-C	134.4 (8)
N-Si	177.0 (5)	N(1)-C	133.1 (8)
N(1)-Si(1)	175,2 (5)	C-C(1)	149.2 (9)
Cl-Ti-N	97.1(2)	C1-Ti-N(1)	91.6(1)
N-Ti-N(1)	64.9(2)	C1-Ti-C1'	98.6(1)
N-Ti-Cl'	92.3(2)	N(1)-Ti-Cl'	156.0(1)
N-Ti-N'	165.6(3)	N(1)-Ti-N'	104.1(2)
N(1)-Ti-N(1')	87.6(3)		

(60%), Zers.-P. 152°C. – MS (FI, m/z): 656 (M, 100%). – ¹H-NMR (CDCl₃): $\delta = 0.0 \text{ s}, 7.1 - 7.7 \text{ m}. - {}^{13}\text{C-NMR} \text{ (CDCl₃): } \delta =$ 1.6, 126.2, 128.1, 129.2, 140.1, 181.2.

> $C_{26}H_{46}N_4O_2Si_4W$ (742.2) Ber. C 42.1 H 6.2 N 7.7 Gef. C 42.2 H 6.2 N 7.7

Tab. 3. Atomkoordinaten (\times 10⁴) und äquivalente isotrope thermische Parameter (pm² 10⁻¹) von 5a (äquivalente isotrope Uberechnet als ein Drittel der Spur des orthogonalen U_{ij} -Tensors)

	x	у	z	Ŭ(eq)
		•	,	
Мо	2464(1)	1483(1)	2599(1)	55(1)
0	3022(3)	1273(6)	3395(4)	84(3)
N(1)	2978(3)	2767(6)	1899(4)	58(3)
N(2)	3280(4)	911(7)	1659(5)	65(3)
С	3416(5)	2033(10)	1519(6)	64(4)
C(31)	4012(5)	2473(9)	995(7)	65(4)
C(32)	4652(7)	2556(10)	1320(7)	91(5)
C(33)	5190(7)	2985(12)	855(11)	121(7)
C(34)	5102(8)	3303(11)	80(11)	107(7)
C(35)	4457(8)	3229(11)	-242(8)	110(6)
C(36)	3906(6)	2813(9)	204(7)	82(5)
Si(1)	2970(2)	4291(2)	2067(2)	77(1)
C(11)	3641(7)	5098(9)	1517(9)	170(8)
C(12)	2102(6)	4859(10)	1780(7)	123(6)
C(13)	3121(8)	4537(11)	3153(7)	156(8)
Sì(2)	3703(2)	-333(3)	1310(2)	79(1)
C(21)	3168(9)	-1495(11)	1419(16)	434(26
C(22)	4479 (9)	-598(15)	1805(12)	302(15
C(23)	3960(11)	-226(13)	263(10)	274(14
0'	1858(3)	2454(5)	2926(3)	71(2)
N(1')	1718(3)	800(7)	1588(4)	53(3)
N(2')	1965(4)	-153(6)	2746(5)	57(3)
c'	1572(5)	-84(8)	2066(6)	52(4)
C(31')	984(5)	-931(10)	1905(6)	61(4)
C(32')	1090(6)	-2017(11)	1558(7)	89(5)
C(33')	518(9)	-2747(10)	1416(7)	100(6)
C(34')	-135(7)	-2402(13)	1623(8)	102(6)
C(35')	-251(6)	-1335(12)	1980(7)	86(5)
C(36')	304(6)	-611(9)	2110(5)	71(4)
Si(1')	1335(1)	1251(2)	669(2)	60(1)
C(11')	577(5)	2180(10)	878(6)	102(5)
C(12')	2001(5)	2087(10)	125(6)	89(5)
C(13')	1074(6)	10(9)	-3(6)	107(5)
Si(2')	1878(2)	-1027(3)	3631(2)	80(1)
C(21')	2662(8)	-1069(18)	4184(12)	337(17
C(22')	1583(9)	-2503(10)	3464(8)	179(9)
C(23')	1207(8)	-347(13)	4272(7)	172(8)

Tab. 4. Ausgewählte Bindungsabstände (pm) und Winkel (°) in 5a

Mo-0	169.4 (6)	Mo-N(1)	210.5 (7)
Mo-N(2)	229.0 (8)	Mo-0'	169.2 (6)
Mo-N(1')	231.0 (7)	Mo-N(2')	211.2 (7)
N(1)-C	134.0 (12)	N(1)-S1(1)	176.1 (7)
N(2)-C	132.7 (14)	N(2)-Si(2)	173.3 (8)
C-C(31)	151.4 (14)	N(1')-C'	130.7 (12)
N(1')-Si(1')	174.4 (7)	N(2')-C'	133.9 (12)
N(2')-Si(2')	176.5 (8)	C'-C(31')	150.5 (14)
O-Mo-N(1)	102.8(3)	0-Mo-N(2)	92.7(3)
N(1)-Mo-N(2)	60.8(3)	O-Mo-O'	106.2(3)
N(1)-Mo-0'	92.2(3)	N(2)-Mo-O'	150.3(3)
O-Mo-N(1')	152.1(3)	N(1)-Mo-N(1')	97.7(3)
N(2)-Mo-N(1')	81.0(2)	O'-Mo-N(1')	91.5(3)
O-Mo-N(2')	94.0(3)	N(1)-Mo-N(2')	152.9(3)
N(2)-Mo-N(2')	97.7(3)	O'-Mo-N(2')	103.4(3)
N(1')-Mo-N(2') 60.4(3)		

Röntgenstrukturanalysen von 4e und 5a: Zur Datensammlung wurde ein Stoe-Siemens-Vierkreisdiffraktometer mit graphitmonochromatisierter Mo- K_{α} -Strahlung ($\lambda = 71.069 \text{ pm}$) benutzt. Eine semi-empirische Absorptionskorrektur wurde durchgeführt. Alle Nicht-Wasserstoffatome wurden anisotrop verfeinert. Die Wasserstoffatome wurden geometrisch positioniert [C-H-Abstand 96 pm, $U(H) = 800 \text{ pm}^2$] und mit Hilfe eines Reitermodells verfeinert.

4e: Raumgruppe C2/c, Z = 4, a = 2120.0(6), b = 924.6(2), c =1812.5(5) pm, $\beta = 96.21(2)^{\circ}$, $V = 3.532 \text{ nm}^3$, $\mu(\text{Mo-}K_{\alpha}) = 0.55$ mm⁻¹, $\varrho = 1.214$ Mg m⁻³, Kristallgröße $0.4 \times 0.3 \times 0.2$ mm, 2852 Reflexe vermessen, davon 1631 mit $F > 3\sigma(F)$ für alle Berechnungen verwendet, R = 0.073, $R_w = 0.064$ [wobei $w^{-1} = \sigma^2(F)$ + 0.0005 F^2], maximale und minimale Restelektronendichte 0.4 bzw. $-0.4 \cdot 10^{-6} e \cdot pm^{-3}$.

5a: Raumgruppe $P2_1/c$, Z = 4, a = 1910.7(2), b = 1141.3(1), $c = 1633.6(2) \text{ pm}, \beta = 90.37(2)^{\circ}, V = 3.563 \text{ nm}^{3}, \mu(\text{Mo-}K_{\alpha}) = 0.52$ mm⁻¹, $\varrho = 1.221$ Mg m⁻³, Kristallgröße $0.2 \times 0.4 \times 0.5$ mm, 3529 Reflexe vermessen, davon 2580 mit $F > 3\sigma(F)$ für alle Berechnungen verwendet, R = 0.064, $R_w = 0.062$ [wobei $w^{-1} = \sigma^2(F)$ + 0.0008 F^2], maximale und minimale Restelektronendichte 0.5 bzw. $-0.6 \cdot 10^{-6} e \cdot pm^{-3}$.

In den Tabellen 1-4 sind die Atomkoordinaten, Bindungslängen und -winkel von 4e und 5a angegeben.

Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Energie Physik Mathematik, D-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD-52933, des Autors und des Zeitschriftenzitates angefordert werden.

CAS-Registry-Nummern

3b: 114185-99-8 / **4a**: 114186-00-4 / **4b**: 114186-01-5 / **4c**: 114186-02-6 / **4d**: 114186-03-7 / **4e**: 114186-04-8 / **4f**: 114186-05-9 / **5a**: 114186-06-0 / **5b**: 114186-07-1 / LiN(SiMe₃)₂: 4039-32-1 / PhcN: 100-47-0 / SiCl₄: 10026-04-7 / SnCl₄: 7646-78-8 / Me₂SnCl₂: 753-73-1 / Ph₂SnCl₂: 1135-99-5 / TiCl₄: 7550-45-0 / ZrCl₄: 10026-11-6 / MoO₂Cl₂: 13637-68-8 / WO₂Cl₂: 13520-76-8

²⁾ H. W. Roesky, M. Scholz, F. Edelmann, M. Noltemeyer, G. M. Sheldrick, Chem. Ber. 120 (1987) 1881.

⁷⁾ A. R. Sanger, Inorg. Nucl. Chem. Lett. 9 (1973) 351.

[37/88]

¹⁾ H. W. Roesky, U. Seseke, M. Noltemeyer, P. G. Jones, G. M. Sheldrick, J. Chem. Soc., Dalton Trans. 1986, 1309; H. W. Roesky, K. V. Katti, U. Seseke, U. Scholz, R. Herbst, E. Egert, G. M. Sheldrick, Z. Naturforsch., Teil B, 41 (1986) 1506; H. W. Roesky, T. Tojo, M. Ilemann, D. Westhoff, ibid. 42 (1987) 877.

³⁾ H. W. Roesky, F. Schrumpf, F. Edelmann, Z. Naturforsch., Teil

B, 42 (1987) 874.

G. Rajca, W. Schwarz, J. Weidlein, K. Dehnicke, Z. Anorg. Allg. Chem. 522 (1985) 83, und die dort zitierte Literatur. 5) J. Barker, N. Cameron, M. Kilner, M. M. Mahoud, S. C. Wall-

work, J. Chem. Soc., Dalton Trans. 1986, 1359. ⁶⁾ M. Witt, H. W. Roesky, M. Noltemeyer, G. M. Sheldrick, Angew. Chem., im Druck.